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Abstract

Capabilities of approximate mathematical modeling of the sounding oil fields with use of shock impulses are studied. To

this goal, a multilayered column-waveguide extracted from a solid half-space is considered. The analysis is carried out with

reference to plane waves propagating in the multilayered medium with arbitrary located layers of various rheological

properties. As a source of signals both surface impulses and underwater or underground explosions, single and periodic,

and also harmonious excitation are considered, and displacements of a free surface—as the response. The process of wave

propagation under repeated reflections from the layer borders is computed numerically with use of the authors’ wave finite

element method. The amplitude–frequency spectrum of the reflected signals is analyzed both qualitatively and using an

original method of ‘‘focusing’’. It is shown, that the analysis of the response for a shock impulse loading allows receiving

sufficiently full information about layers’ location and thickness. The considered approaches can be used at processing and

analyzing the reflected signals obtained experimentally during investigations of oil fields.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In connection with the accelerated exhaustion of the Earth’s oil resources, improvement of methods for new
oil fields exploration, including ones situated under a seabed, gets the increasing value. One of such methods is
sounding oil fields with use of shock impulses, actuating deformation waves, and the analysis of the acoustic
signals reflected from various layers [1,2]. The similar problems demanding a study of wave propagation in
multilayered media are of interest for problems of seismology, acoustics, dynamics, composite materials, and
in other areas of science and engineering. In a number of papers devoted to simulation of wave propagation in
layered media, plane elastic waves caused by sources distributed over the surfaces are mostly considered. Of
greater interest is the analysis of disturbances induced by a point and underwater (underground) sources.
A study of wave processes in such systems on the basis of exact 3-D equations of the continuous medium, even
in an axisymmetric formulation, appears rather complex [3], as it demands consideration of spatial waves
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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under their numerous refractions and reflections at layer borders. Yet more complexities arise in studies of
repeated reflections in media with non-elastic characteristics.

In this paper, opportunities of the approximate mathematical modeling of the specified processes with the
practical purpose are investigated. The analysis is carried out with respect to propagation of deformation
waves concentrated in a small site of the multilayered half-space. The layer may be of different thickness with
various physical and mechanical properties. A laminate can be transversely isotropic. As a source of the
directed signals, single and periodic shock impulses, and also harmonic exciting loads located on the surface
site or explosions at some depth are considered; and as the response—displacements of a free surface at the
center of the loaded site. Note that studying the response at such a site is of the greatest practical importance.
As an approximate approach, a column-waveguide is extracted from the half-space normally to the free
surface, and an analysis of 1-D wave propagation along the column is carried out. Repeated partial reflections
from layer borders and an interaction with other part of the half-space in the axisymmetric formulation are
accounted. The process of wave propagation is numerically calculated with use of a wave finite element
method (WFEM), described in Refs. [4,5]. An amplitude–frequency spectrum of the reflected signals is
investigated both analytically and by means of the special analysis system [6].

2. Problem’s formulation

A circular cylindrical column-waveguide of small radius R and height LbR is extracted from a solid half-
space normally to the free surface z ¼ 0 (Fig. 1). The half-space consists of n layers of various thickness Lk

with different physical and mechanical properties assumed constant within each layer. The beginning of the
layer k has coordinate zk ¼

Pl¼k�1
l¼1 Ll , and the last layer k ¼ n bases on a rigid or viscous-elastic ground at

z ¼ L. The column’s deformed state is considered plane and axisymmetric. The effect of the column
interaction with the medium on the lateral surface is described using a generalized elastic foundation assuming
independent resistance of environment at each section z to column’s lateral deformation. Mechanical
properties of the column and environment can be identical or different, for example, elastic transversely
isotropic, and also simulate behavior of ideal or viscous liquids. At the time t ¼ 0 a longitudinal load F zð0Þ ¼
pR2qzð0Þ that changes further according to any law Fz(t) is suddenly applied to a free surface of the column or
at any depth zimp. The response of the system (longitudinal displacement uz at the free surface) under
propagation of plane waves of longitudinal stresses sz and strains ez is studied with regard to their repeated
reflections from column ends and layer borders.

For numerical analysis the WFEM [4] in the form, most convenient for modeling 1-D wave fronts and
conditionally named in work [5] ‘‘direct mathematical modeling’’, is used. In the present paper, the analysis
was carried out for an elastic medium, but the approach can be also developed for non-elastic media with
complex rheological properties [6].
Fig. 1. Scheme of a column-waveguide extracted from elastic half-space.
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3. Simulating a wave process in an elastic column-waveguide extracted from transversely isotropic medium

3.1. Approximate model of a column-waveguide with medium interaction

Under axial symmetry, tangential and radial components of stresses and strains at the column axis (at r ¼ 0)
coincide with each other, sj ¼ sr, �j ¼ �r. These equalities are assumed to be approximately true also within a
small area adjoining the axis. In this case the general equations of elasticity for the column yield:

�r ¼ �j ¼
ð1� mÞsr � msz

E
; �z ¼

sz � 2msr

E
, (1)

where E is the Young’s modulus, m is the Poisson’s ratio.
Radial (transverse) displacements of the column’s lateral surface

mr ¼ R�j ¼
R

E
ð1� mÞsr � msz½ � (2)

should be equal to radial displacements of an environment at r ¼ R which can be approximately found from
Lame’s formulae for a long pipe with a small hole of the radius R exposed to internal pressure p ¼ �sr:

u�r � ð1þ m�Þ
pR

E�
, (3)

where the superscript (�) refers to the medium terms in a radial direction.
From equality ur ¼ u�r , we find

sr ¼ Krsz, (4)

where

Kr ¼
m

1� mþ ð1þ m�ÞE=E�
. (5)

Inserting Eq. (4) into the second Eq. (1), we obtain the governing equation of elasticity for a 1-D problem of
longitudinal deformation of column-waveguide layers in a transversely isotropic medium

sz ¼ Eg�r, (6)

where the reduced modulus of elasticity is

Eg ¼
E

1� 2mKr

. (7)

In particular cases:
E=E�51 (rigid medium), Kr ! m=ð1� mÞ; �r ! 0; and

Eg ¼
Eð1� mÞ

ð1þ mÞð1� 2mÞ
, (8)

that coincides with the usual bulk modulus of an elastic body; E=E�b1 (free column without lateral
constraints), Kr ! 0; sr ! 0; and

Eg ¼ E; (9)

E=E� ¼ 1 and m=m� ¼ 1 (materials of the column and medium are isotropic and identical), Kr ¼ 0.5m and

Eg ¼
E

1� m2
. (10)

Eqs. (5)–(7) allow taking into account the influence of anisotropy of the medium on longitudinal rigidity of
a column.

Equality of medium’s and column’s axial displacements u�z ðRÞ ¼ uz at their common border r ¼ R causes
shear g�rzðRÞ. If a column’s foundation is firm, displacements u�z ðrÞ and shears g�rzðrÞ must fade at distance from
the axis. Under the assumption that the medium’s response is described by generalized elastic foundation and
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displacements u�z ðrÞ for a first approximation are u�z ðrÞ ¼ u�z ðRÞðR=rÞ, tangential stresses are

t�rzðRÞ ¼ G�rzg
�
rzðRÞ ¼ �G�rzuz=R, (11)

where

g�rzðrÞ �
qu�z ðrÞ

qr
(12)

and G�rz is the medium’s shear modulus in the plane rz.
In a case of interaction of the column with a liquid medium, in which no tangential stresses arise, G�rz ¼ 0.
3.2. Calculation method using WFEM approach

Index z at longitudinal forms is further omitted.
Due to WFEM [4,5], the stress-inertial state of a small element j of finite length Dzj at the discrete time

instants ti ¼ ði � 1ÞDt, where i ¼ 1, 2,y is a number of time steps and Dt is a small time interval, is assumed
homogeneous with values of stress sj,0, strain �j;0 ¼ sj;0=Ejr and velocity vj;0. At these moments, strong
discontinuities of the specified parameters arise at borders between neighboring elements. As such
discontinuities at any point of the solid must immediately decay, node parameters receive new values that
are denoted as s�j , �

�
j ¼ s�j =Ejr and v�j for ‘‘left (�)’’ and ‘‘right (+)’’ element borders. Disturbances s�j � sj;0

and others propagate into depth of the element with a speed cj ¼ ðEjr=rjÞ
0:5, where rj is material’s density for

element j, and will reach its opposite borders in time Dtj ¼ Dzj=cj that assumes the same magnitude Dtj ¼ Dt

for all elements. Then, the length of elements j of each layer should fulfill a condition Dzj ¼ cjDt that can be
sufficiently well achieved by means of the increase in the number of elements. At the instant tiþ1 ¼ ti þ Dt the
stress-inertial state of the element becomes again homogeneous with new values of the parameters defined by
equations

sj ¼ s�j þ sþj � sj0; vj ¼ v�j þ vþj � V j0. (13)

For the given time step, the border forms are connected with initial ones by equations

s�j ¼ sj;0 � bjðv
�
j � vj;0Þ, (14)

where bj ¼ rjcj ¼
ffiffiffiffiffiffiffiffiffi
rjEj

p
is an element impedance.

For a column of a constant area, conditions of continuity and equilibrium at borders of the neighboring
elements, for example, (j�1) and j, yield

vj ¼ vþj�1 ¼ v�j ; s�j � sþj�1 þ qj ¼ 0. (15)

Here qj ¼ qj;f þ qj;g, where qj;f is external longitudinal force, referred to a border between elements j�1 and
j, averaged in time Dt and carried to the area of a column A ¼ pR2, and qj;g is a force from tangential stress.
According to Eq. (11),

qj;g ¼ 2pRDzjmt�rzðRÞ=A ¼ �2DzjmG�rzujm=R2, (16)

where an average length of adjacent elements is Dzjm ¼ 0:5ðcj�1 þ cjÞDt and averaged for a time Dt

displacement of the border between them is ujm � uj;0 þ 0:5vjDt with initial value uj;0 for the given step.
Stresses and velocities at borders between elements are uniquely determined by Eqs. (14)–(16).
Further, the following dimensionless quantities are introduced:

s̄ ¼ s=q0; �̄ ¼ �Er1=q0; v̄ ¼ vr1c1=q0; ū ¼ uE1=L1q0; t̄ ¼ tc1=L1; z̄ ¼ z=L1,

Ē ¼ E=E1; Ḡ ¼ G=E1; r̄ ¼ r=r1; c̄ ¼ c=c1; b̄ ¼ b=b1; R̄ ¼ R=L1, ð17Þ

where q0 is a value of pressure applied to the column.
Later, the over-bars in most cases are omitted.
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It follows from Eqs. (14) and (16)

sþj�1 ¼ sj�1;0 þ bj�1ðv
þ
j�1 � vj�1;0Þ,

s�j ¼ sj;0 � bjðv
�
j � vj;0Þ,

qj;g ¼ qj;g0 � bj;gvj ð18Þ

and

qj;g0 ¼ �
ðcj�1 þ cjÞG

�
rzuj;0

R2
; bj;g ¼ �

ðcj�1 þ cjÞG
�
rz

2R2
. (19)

Substituting Eq. (18) into (15), we obtain

vþj�1 ¼ v�j ¼
bj�1vj�1;0 þ bjvj;0 � sj�1;0 þ sJ ;0 þ qj;f þ qj;g0Dt

bJ�1 þ bj þ bj;gDt2
(20)

and then, using Eq. (18), we find stresses sþj�1, s
�
j , and also new value uj ¼ uj;0 þ vjDt.

Boundary conditions at the column ends at z ¼ 0 (j ¼ 1), and also at z ¼ 1 (j ¼ n) are defined according to
Eq. (14) as

v�1 ¼ v1;0 � s�1 þ s1;0; with s�1 ¼ �q ðas b1 ¼ 1Þ; (21)

sþn ¼ sn;0 � bnvn;0; with vþn ¼ 0 ðfor a firm groundÞ. (22)

Calculations are carried out by means of a step-by-step procedure with the step number nt corresponding to
the time tfin ¼ ntDt. By increasing the number of elements and relevant decreasing time steps, the described
system of recurrent equations leads to the ‘‘exact’’ wave solution, as a classical method of characteristics [4].
For a multilayered medium each layer is divided into nk equal elements of the length Dzk ¼ Lk=nk,
approximately satisfying condition Dzk ¼ ckDt with Dt ¼ const., or

nk ¼ n1Lk=ck. (23)

4. Numerical results

Three variants of the column-waveguide with characteristics presented in Tables 1 and 2 are studied below.
In all cases rk ¼ 1, Dz1 ¼ Dt ¼ 1=n1, Tk ¼ Lk=ck, Gn

rz ¼ 0. On the subsequent figures, patterns of reflected
signals perceived at the free surface of column-waveguides are shown. The response is presented as a
dependence of dimensionless longitudinal displacement u upon dimensionless time t with the changed sign of u

(a surface displacement directed upwards against the z-axis is considered as positive).

4.1. Response induced by a single impulse

According to the WFEM approach, minimal duration timp of a single impulse (explosion) can be equaled to
one time step Dt, and impulse magnitude related to the area of a column is q0Dt. For imitation of the explosion
at some depth zimp ¼ ðjimp � 0:5ÞDz1 of the first layer, we accept that during the first step Dt external
longitudinal forces qj;f ¼ �q0 and qjþ1;f ¼ q0 affect the left and right borders of element jimp, respectively.
Table 1

Characteristics of two-layered systems A and B

System A B

k 1 2 1 2

Lk 1 0.6 1 1.2

Ck 1 2 1 5

Tk 1 0.3 1 0.24

nk 10 3 100 24
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Table 2

Characteristics of a four-layered system C

k 1 2 3 4

Lk 1.0 0.5 0.5 0.2

Ck 1 5 2 5

Tk 1 0.1 0.25 0.04

nk 100 10 25 4

Fig. 2. Signals sequences at a free surface of two-layered system A: (a) surface impulses and (b) inner explosions.

B.F. Shorr et al. / Journal of Sound and Vibration 308 (2007) 599–611604
Disturbances induced by them in the form of compression waves will go to the opposite directions—
‘‘upward’’, to the free surface and ‘‘downward’’, to the boundary with the subsequent layer.

In Fig. 2 responses of two-layered system A depending on forms of the applied impulse are presented. In the
response to a surface unidirectional impulse (zimp ¼ 0, Fig. 2a) oscillations with the period t � 0:47
corresponding to the lowest natural frequency of the whole column prevail. Compared to them, other signals
are almost not detectable. In the response to an inner explosion (zimp ¼ 0:25, Fig. 2b), when the full impulse
applied to the system vanishes, oscillations due to the first natural form are not seen, but the numerous signals
reflected from layer borders become distinctly apparent. Below, we shall basically consider responses of this
kind. For imitation of a short impulse, a number of elements in each layer must be nkb1, as the system B
demonstrates (see Table 1). Here is accepted zimp ¼ 0.195 (jimp ¼ 20). The pattern displayed in Fig. 3 describes
wave process in detail, namely: t1 ¼ 0.19—output of the ‘‘upward’’ compression wave to the surface,
t2 ¼ 1.81—arrival of the ‘‘downward’’ compression wave reflected from the layers border, t3 ¼ 2.19—arrival
of the first expansion wave induced by repeated reflection of the ‘‘upward’’ wave from the layers border,
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Fig. 3. Surface signals for two-layered system B after inner explosions.

Fig. 4. Surface signals for four-layered system C.
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t4 ¼ 2.29—arrival of the ‘‘downward’’ compression wave reflected from the ground, t5 ¼ 2.67—arrival of the
second expansion wave generated by ‘‘upward’’ one after its reflection from the ground, t6 ¼ 2.77—arrival of
the secondary wave caused by wave reflections within the second layer, etc. Considering the pattern in Fig. 3 as
a result of experimental measuring of reflected signals with known layers properties, we can determine
positions and thickness of layers as L1 ¼ c1ðt3 � t1Þ=2 ¼ 1 and L2 ¼ c2ðt4 � t2Þ=2 ¼ 1:2. On the other hand,
knowing a depth at which an explosion has been made, it is possible to find speed of wave propagation in a
corresponding layer. In our case c1 ¼ ðzimp � 0:5Dz1Þ=t1 ¼ 1.

In Fig. 4 calculation results for the four-layered system C (see Table 2) are presented. The signal source has
remained at the same place. The signal pattern becomes more complex. Already at t3 ¼ 2.01 a new peak
appears connected with an expansion wave, reflected from a border between the second and third, softer layer.
Careful analysis also allows establishing sources of other peaks. Using the WFEM approach for calculations
of wave propagation and reflection, laws of momentum and energy conservation are strictly satisfied. Under
the accepted conditions G�rz ¼ 0 and a rigid ground the system of multilayered column-waveguide is
conservative; then the reflected signals should not fade with time that is verified by the aforesaid results.

4.2. Response induced by periodical impulses

Results of calculations for the two-layered system B affected by series of consecutive internal explosions
with different intervals tint, equal to 0.47, 0.48, 0.49 and 0.50, are presented in Figs. 5a–d, respectively. In
Fig. 6 peak values of the response with a level exceeding u ¼ 1 are depicted for explosions intervals 0.47, 0.48
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Fig. 5. Surface signals for system B after periodical inner explosions with intervals tint: (a) tint ¼ 0.47, (b) tint ¼ 0.48, (c) tint ¼ 0.49, and

(d) tint ¼ 0.50.

Fig. 6. Same as in Fig. 5 for signal peak values: (�) tint ¼ 0.47, (&) tint ¼ 0.48, and (K) tint ¼ 0.49.

B.F. Shorr et al. / Journal of Sound and Vibration 308 (2007) 599–611606
and 0.49. Here, the process is traced up to essential great time values. The interval tint ¼ t4 � t2 ¼ t5 � t3 ¼

0:48 is equal to a double time that an elastic wave requires passing through the second layer. One can see, that
at such an interval unlimited (though stepwise) amplification of the response is observed, as well as under a
condition of a usual resonance in a linear conservative system. Some response amplification occurs also at
tint ¼ 0.49. But at tint ¼ 0.47 and 0.50 such phenomenon is not marked. At the explosions interval tint ¼ 4.17
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Fig. 7. Response of system B to periodical impulses with interval tint ¼ 1.47; vertical lines—full response, dots—local maxima.

Fig. 8. Surface signals for system C after periodical inner explosions with intervals tint: dots—tint ¼ 0.18 and tint ¼ 0.21; vertical

lines—tint ¼ 0.19 and 0.20.

B.F. Shorr et al. / Journal of Sound and Vibration 308 (2007) 599–611 607
corresponding to the first own oscillation period of the considered two-layered elastic column, periodic
impulses caused by internal explosions do not result in a resonance, as it is visible from Fig. 7 where vertical
lines show the full calculated response, and dots—local maxima.

The process becomes, naturally, complicated in multilayered system. It is seen from Table 2 that for the
four-layer system C dimensionless times of elastic waves passage through the second and third layers are 0.10
and 0.25, respectively. A pattern of the surface response to waves induced by internal explosions repeating
with intervals 0.18, 0.19, 0.20 and 0.21 is presented in Fig. 8. The interval tint ¼ 0.20 answers the double value
of the wave passage time through the second layer. Fig. 8a concerns with the first thousand steps
(i.e., t ¼ 0.01–10), Fig. 8b, constructed in the same scale, with a range of values t ¼ 35–45. The response at
tintE0.19–0.20 significantly increases with time.

Fig. 9 presents the response to waves’ passage through the third layer. The strongest responses are marked
near interval tint � 2T3 � 0:50, but at exact value tint ¼ 0.50 the response sharply drops, that, seemingly, is
caused by opposite phases of waves reflected from layer borders.

4.3. Harmonic excitation of multilayered column-waveguide oscillations

For harmonic excitation by loads applied to the free surface, it is naturally to await the resonant response of
the system to its own frequencies fm. In Fig. 10a surface displacements of two-layered column-waveguide A are
shown under harmonic excitation with the period t1 ¼ 1/f1 ¼ 0.47, and in Fig. 10b the response under periodic
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Fig. 9. Same as in Fig. 8 for intervals tint: (a) tint ¼ 0.25, (b) tint ¼ 0.49, (c) tint ¼ 0.50, (d) tint ¼ 0.51, and (e) tint ¼ 1.00.
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impulses with the same time interval. In both cases a resonant amplification is seen, but of various intensity.
Diagnostic attributes of layers parameters, as well as in the case of a single impulse applied to the surface
(cf. Fig. 2), become absolutely imperceptible against a background of strong increase of resonant
displacement.
5. Spectral analysis of reflected signals

5.1. Computational procedure

Although a transient wave process for multilayered systems (especially under resonant amplification
without damping forces) is not periodic in time, some repeated frequencies of signals are clearly traced at
displayed figures. Regarding a calculated response domain within some steps nt as a part of any periodical
process consisting of N sequential discrete values, a procedure of spectral analysis becomes available.
Obviously, Npnt. Due to the discrete Fourier transform, the mth spectral component Sm of the response is
determined as

Sm ¼
1

N

Xn�1

n¼0

sn expð�i� 2pmn=NÞ; m ¼ 0; 1; . . . ;N � 1, (24)
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Fig. 10. Surface displacements of system A as a response to applied variable pressure with interval tint ¼ 1.47: (a) harmonic excitation,

(b) periodical impulses.
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where sn are specified values of displacement u(t) with quantization period Dt, e.g.

sn ¼ uðtÞ; t ¼ nDt; n ¼ 0; 1; . . . ;N � 1. (25)

The fast Fourier transform algorithm was used to calculate spectrum amplitudes

Am ¼ 2jSmj; m ¼ 1; 2; . . . ;N=2, (26)

with realization length N ¼ 29–211 (512, 1024, 2048).
To compare the previous calculation data with results of the spectrum analysis, the later are presented in

forms Am ¼ f ðN=mÞ or Am ¼ f ðimÞ, where im is the nearest integer to the fraction N/m. The value of im is equal
to the number of response points sn related to the spectral component with the amplitude Am. As, on the other
hand, i ¼ t=Dt ¼ tn1, we obtain a definite connection of spectral amplitude Am with any dimensionless signal
period Tm ¼ im=n1. With the purpose to reduce spectral analysis distortions connected with the structure of
the Fourier transform limited within its fragment’s period, the special method of ‘‘focusing’’ offered in [7] has
been used.

For analysis of responses induced by a single impulse, the method is applied to assess harmonics’ amplitudes
by means of the local spectrum maxima. If at some value m a distinct maximum in the amplitude spectrum is
observed, it means that a harmonic constituent of the reflected signal with a period approximately equal to
Tm � N=mn1 is located in the vicinity m70.5. For periodic impulses the maxima of spectral amplitudes for the
same realization length are calculated in dependence on the period of impulse application.

5.2. Examples on spectral analysis of reflected signals

As an elementary example, reflected signals for the column-waveguide A induced by a surface impulse are
studied. Fig. 11 shows spectrograms Am ¼ f ðN=mÞ with a realization length N ¼ 512. The first spectrogram
corresponds to the excitation due to a single impulse, the subsequent ones to the excitation provoked by
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Fig. 11. Spectrogram of reflected signals for system A.

Fig. 12. Response of system C to periodical pulse exciting with interval n1tint: (a) maximum of calculated displacements umax and

(b) maximum of spectral amplitude Amax.

B.F. Shorr et al. / Journal of Sound and Vibration 308 (2007) 599–611610
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repeated impulses with periods multiple to time of wave passage through the corresponding layers: the second
with period 4ðn1 þ n2Þ ¼ 52, the third with 4n1 ¼ 40, the fourth with 4n2 ¼ 12. The component N/m ¼ 46.55
(m ¼ 11, i11 ¼ 47) which is distinctly determined in all the spectrograms, leads to close correlation of time
T11 ¼ i11=n1 ¼ 4:7 with the first period of own oscillations T � 4:7 for the whole console column. Along with
this, responses to periodic excitation in the form of local maxima (accurate to the spectral resolution) clearly
appear in corresponding spectrograms Nos. 2–4 in Fig. 11, despite the lack of periodicity for the process as a
whole.

For the column-waveguide C the spectral analysis of responses to excitation with the periods tinto0.50,
E0.50 and 40.50 has been carried out for realization length N ¼ 2048. In Fig. 12 the maximum of primary
calculated displacements umax and the maximum of spectral amplitude Amax for each impulse interval
iint ¼ n1tint at n1 ¼ 100 are obtained. In conformity with the qualitative estimate of the curves in Fig. 9, the
response sharply drops at value tint ¼ 0.50. Curves of spectral amplitude maxima have smoother character and
their magnitude is smaller than the primary calculated maxima depending on various responses superposition.
It makes the characteristic Amax more objective for diagnostics of the reflected signals source.

6. Conclusion

The possibility of mathematical simulation of wave propagation in a multilayered medium using a model of
column-waveguide affected by surface or internal impulses that approximately imitates a process of oil field
sounding is demonstrated. A source of signals can be single or periodic surface impulses and internal
explosions. Propagation of 1-D waves under repeated reflections from layer borders is effectively calculated
numerically with use of a WFEM. In spite of the fact that the pattern of reflected responses as a whole is not
periodic, presence and magnitude of periodical components in their amplitude–frequency spectrum can be
revealed by means of the special spectral analysis.

The numerical examples show that calculation sensitively responds to varying loading conditions. The
analysis of arrival time of reflected signals caused by internal explosion allows receiving the certain
information on layers’ location and thickness, including the wave propagation speed. Periodic impact-pulse
loading reveals frequencies at which the response noticeably amplifies or weakens, thus allowing to its
‘‘resonant’’ values and associated times required for wave fronts to pass through each layer. However,
approaches to practical diagnostic use of calculation results for periodic pulse loading demand further studies.

The proposed way for approximate investigation of wave propagation in a multilayered medium using a
single or periodic pulse loading of a column-waveguide model can find applications at processing and analysis
of the reflected signals experimentally recorded at sounding of oil fields.
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